Ring of Fire
Mount St. Helens and the Cascade Range are a small part of the Ring of Fire, a zone of intense volcanic and seismic activity that surrounds the Pacific Ocean, stretching from the west coast of South America, northward through Central and North America to Alaska and the Aleutian Islands.
The Ring of Fire continues over to the east coast of Asia (including eastern Siberia and Japan) and encompasses islands in Oceania and the Pacific Ocean as far south as New Zealand.
According to the U.S. Geological Survey (USGS), Mount St. Helens began growing before the end of the Ice Age; its oldest ash deposits date to at least 40,000 years ago. Yet the visible portion of the volcano—the cone—is much younger. Geologist believe it formed over the last 2,200 years.
Mount St. Helens had nine main eruptions prior to the 1980 eruption. Each “pulse” of eruptions lasted less than 100 years to up to 5,000 years, with long intervals of dormancy between them.
Between 1800 and 1857, a large explosion followed by a series of smaller eruptions created the Goat Rocks lava dome, a geologic feature that was later annihilated by the 1980 blast.
A Volcanic Giant Rouses
Modern-day scientists and geologists were concerned about Mount St. Helens years before 1980. Some felt it was the most likely volcano to become active before the end of the twentieth century. They were right.
Beginning on March 16, 1980, a series of thousands of earthquakes and hundreds of steam explosions (known as phreatic explosions) began at Mount St. Helens, causing its outward north side to grow over 260 feet. One earthquake on March 20 measured 4.2 on the Richter Scale, causing snow avalanches but little additional damage.
On March 27, Mount St. Helens emitted at least one booming explosion and spewed a 6,000-foot ash cloud into the sky. The volcano continued to spit ash through the end of April, forming two large craters which eventually merged into one.
Volcanic activity took a brief respite at the end of April but resumed on May 7. As magma from deep within the earth’s crust pushed upward into the volcano, Mount St. Helens changed shape and grew about five feet daily.
Earthquakes and persistent steam explosions continued, and it became clear a massive eruption was inevitable, yet no one knew when.
Earthquakes and Landslides
Early in the morning on Sunday, May 18, 1980, volcanologist David Johnston took measurements of Mount St. Helens from a nearby observation post. There were no red flags to predict the catastrophe about to happen.
At 8:32 Pacific Daylight Time, a magnitude 5.1 earthquake struck one mile under Mount St. Helens, triggering the largest debris landslide in recent history. Johnston managed to radio the information—but sadly, he wouldn’t survive the day.
The debris landslide and mudflows took out the volcano’s summit and bulge and traveled down the North Fork of the Toutle River, filling the basin up to 600 feet in some areas. The USGS estimates the volume of the debris landslide was equal to 1 million Olympic-size swimming pools.
Mount St. Helens Erupts
The debris landslide took the pressure off the volcano’s magma structure, which caused massive lateral explosions and spewed tons of ash, rock, volcanic gas and steam. As the lateral blast accelerated, it reached a velocity of up to 670 miles per hour and covered a 230-square-mile area north of the volcano with searing debris.
It’s estimated the blast reached or surpassed supersonic speed in some areas. Strangely, although the thunderous blast was heard hundreds of miles away, it wasn’t loudly heard in the immediate area around Mount St. Helens, where there was a so-called quiet zone.
The lateral blast tore off the top 1,300 feet of the volcano, leaving a new crater behind. It demolished every tree within a six-mile inner radius and scorched others. It’s estimated that four billion board feet of lumber was destroyed.
The lateral explosion also triggered pyroclastic flows, fast-moving blasts of deadly superheated volcanic gas and pumice.